32,688 research outputs found

    Zero-temperature TAP equations for the Ghatak-Sherrington model

    Full text link
    The zero-temperature TAP equations for the spin-1 Ghatak-Sherrington model are investigated. The spin-glass energy density (ground state) is determined as a function of the anisotropy crystal field DD for a large number of spins. This allows us to locate a first-order transition between the spin-glass and paramagnetic phases within a good accuracy. The total number of solutions is also determined as a function of DD.Comment: 11 pages, 2 ps figures include

    Effects of Random Biquadratic Couplings in a Spin-1 Spin-Glass Model

    Full text link
    A spin-1 model, appropriated to study the competition between bilinear (J_{ij}S_{i}S_{j}) and biquadratic (K_{ij}S_{i}^{2}S_{j}^{2}) random interactions, both of them with zero mean, is investigated. The interactions are infinite-ranged and the replica method is employed. Within the replica-symmetric assumption, the system presents two phases, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic couplings between the spins.Comment: 16 pages plus 2 ps figure

    Effective restoration of the U_A(1) symmetry with temperature and density

    Full text link
    We investigate the full U(3)\otimesU(3) chiral symmetry restoration, at finite temperature and density, on the basis of a quark model which incorporates the most relevant properties of QCD in this context: explicit and spontaneous breaking of chiral symmetry and axial UA_A(1) symmetry breaking. A specific lattice-inspired behavior of the topological susceptibility, combined with the convergence of chiral partners, signals the onset of an effective chiral symmetry restoration. The results suggest that the axial part of the symmetry is restored before the possible restoration of the full U(3)\otimesU(3) chiral symmetry can occur. This conclusion is valid in the context of both finite temperature and density.Comment: 5 pages, 2 figures; PRD versio
    corecore